数学でよく出てくる記号について説明します.
【スマホでの数式表示について】
ギリシャ文字
数学では,変数,パラメータ,集合,要素,演算,写像などを表す記号として,しばしばギリシャ文字を用いる.ギリシャ文字の大文字,小文字,読み方を以下に示す.
,
: alpha アルファ
,
: beta ベータ
,
: gamma ガンマ
,
: delta デルタ
,
: epsilon イプシロン
,
: zeta ゼータ
,
: eta イータ
,
: theta シータ
,
: iota イオタ
,
: kappa カッパ
,
: lambda ラムダ
,
: mu ミュー
,
: nu ニュー
,
: xi クシー
,
: omicron オミクロン
,
: pi パイ
,
: rho ロー
,
: sigma シグマ
,
: tau タウ
,
: upsilon ユプシロン
,
: phi ファイ
,
: chi カイ
,
: psi プシー,プサイ
,
: omega オメガ
集合
集合と元
元(element)
が集合(set)
に属するとき,記号
を用いて
(1) ![]()
と書き,「
は集合
の元である(
is an element of
)」という.
部分集合
集合
が集合
の部分集合(subset) であるとき,記号
を用いて
(2) ![]()
と書く.
と
の関係(relation) を包含関係(inclusion) という.
(3) ![]()
と書く.
(4) ![]()
と書き,
は
の真部分集合(proper subset または strict subset) であるという.
空集合
元を含まない集合もひとつの集合であり,これを空集合(empty set) という.空集合は
(5) ![]()
などの記号で表す.
自然数,整数,有理数,実数,複素数の集合
自然数,整数,有理数,実数,複素数の集合は,大文字の白抜きボールド体(Blackboard bold;黒板ボールド)を用いて,以下の記号で表す.
: 自然数の集合 (the set of natural numbers)
: 整数の集合 (the set of integers)
: 有理数の集合 (the set of rational numbers)
: 実数の集合 (the set of real numbers)
: 複素数の集合 (the set of complex numbers)
存在量化子と全称量化子:「ある~」と「任意の~」を表す記号
与えられた条件を満たす数学的対象
が存在するとき,記号
を用いて,
(あるいは
)
と書き,「ある
について~である」「~であるような
が存在する」などと読む.記号
は存在量化子(existential quantifier)という.
また,与えられた条件を満たす数学的対象
を任意に指示するとき,記号
を用いて,
(あるいは
)
と書き,「任意の
について~である」などと読む.記号
は全称量化子(universal quantifier)という.
関数と写像
関数(写像)を表す矢印記号
集合
が与えられているとする.また,
を
にうつすような,
上の関数(function)(あるいは写像(map, mapping) )
が定義されたとする.すなわち,任意の
に対して
を満たすような
が存在する.このことを,存在量化子と全称量化子を用いて書けば
(6) ![]()
などとなる.
このような,関数(あるいは写像)と集合と元の関係は,矢印記号
および
を用いて,以下のように簡潔に表すことができる.
(7) ![]()
矢印
は集合上の写像関係を表し,矢印
はその写像による元の結びつきを表す.
は
(8) ![]()
などと書くこともできる.

コメントを残す